
1

IBM Systems and Technology Group (STG)

© Copyright International Business Machines Corporation 2010.

07/31/10 22:17:00

New CPU Facilities in the
IBM zEnterprise™ 196

Dan Greiner
dgreiner@us.ibm.com
z/Server Architecture
SHARE 115 in Boston

Session 7034, 4 August 2010, 3:00 pm

Note: This PowerPoint presentation contains a significant amount of animation to help illustrate the
concepts described. SHARE proceedings are usually restricted to Adobe portable-document-format
(.pdf) files. If you would like a copy of the original PowerPoint slide show, please see me after the
session or send me an email at the address on the cover page.

2

2SHARE 115

The Legal Stuff

Trademarks:
► The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:
– ESA/390
– IBM
– z/Architecture
– z/OS
– z/VM

► IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in the United States, other
countries, or both.

► Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.
► Unicode is a registered trademark of Unicode, Incorporated in the United States, other countries, or both.
► Other trademarks and registered trademarks are the properties of their respective companies.

All information contained in this document is subject to change without notice. The products described in
this document are not intended for use in applications such as implantation, life support, or other
hazardous uses where malfunction could result in death, bodily injury or catastrophic property damage.
The information contained in this document does not affect or change IBM product specifications or
warranties. Nothing in this document shall operate as an express or implied license or indemnity under the
intellectual property rights of IBM or third parties. All information contained in this document was obtained
in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.
While the information contained herein is believed to be accurate, such information is preliminary, and
should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy
or completeness are made.
The information in contained in this document is provided on an “AS IS” basis. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

© Copyright International Business Machines Corporation 2010. Permission is granted to SHARE, Inc. to
publish this presentation in the proceedings of SHARE 115.

3

3SHARE 115

Topics du Jour

High-Word Facility

Interlocked-Access Facility

Load/Store-on-Condition Facility

Distinct-Operands Facility

Population-Count Facility

Floating-Point-Extension Facility

Message-Security-Assist Extension 3

Message-Security-Assist Extension 4

Miscellaneous Enhancements

This presentation reviews the new CPU facilities introduced (mostly) by the IBM zEnterprise 196
series of processors (the one exception is the message-security-assist extension 3 [MSA-X3] which
was introduced in the System z10 GA3 machines, but was not previously published).

The major focus is on general instructions used by various high-level languages such as C and Java.
The final slides will address a few other facilities available for authorized programs.

If you have a PowerPoint version of the presentation, this slide, and the section headings that they
designate, contain hyperlinks to the various topics and subtopics. Each slide containing specific
information has an “Index” hiperlink in the bottom-right corner that will return you to the next-higher
level of information. (Note, SHARE limits their download page to PDFs; if you want the PowerPoint
show, see me after the presentation, or send a note to dgreiner@us.ibm.com.)

4

4SHARE 115

High-Word Facility (1)

Suite of instructions to manipulate bits 0-31 of a GPR

For purposes of address-generation interlock (AGI),
leftmost bits (0-31) are treated separately from rightmost
bits (32-63)

Intended to provide register-constraint relief for compilers

Installation of the high-word facility (& al.) indicated by
facility bit 45

Index

Since its introduction in 1964, System 360 and all of its successors have provided 16 general-
purpose registers. To alleviate the constraint felt by many programmers, numerous architectural
features have been added: The relative branching (short and long) facilities, immediate- and
extended-immediate-operand facilities, and the long displacement facility are a few examples.
However, the 16-register limit continues to prove daunting to both assembler programmers and
compiler designers alike.

Although z/Architecture provides 64-bit addressing and arithmetic, many applications continue to
operate in the 31-bit addressing mode, and rarely require higher-precision arithmetic than 32 bits. For
such programs, the leftmost 32 bits of the 64-bit registers have been of little use … until now.

The high-word facility provides a means by which selected new instructions can operate on the
leftmost 32 bits (bits 0-31) of a general register – independent of the rightmost 32 bits (bits 32-63).
This separation extends into address generation performed while in the 24- or 31-bit addressing
modes; the updating of the leftmost 32 bits of a general-purpose register, using the high-word
instructions, does not affect any pipeline address-generation interlock used by the rightmost 32 bits.

Several of the facilities discussed in this presentation share a common facility bit. Bit 45 indicates the
installation of the high-word, interlocked-access, load/store-on-condition, distinct-operands,
population-count, and fast-BCR-serialization facilities.

5

5SHARE 115

High-Word Facility (2):

—I2 [32 bits]R1.0-31CCDCIHCOMPARE IMMEDIATE HIGH

—S20 [32 bits]R1.0-31E3CDCHFCOMPARE HIGH

—R2.32-63R1.0-31B9DDCHLRCOMPARE HIGH

—R2.0-31R1.0-31B9CDCHHRCOMPARE HIGH

—RI2 [16 bits]R1.0-31CC6BRCTHBRANCH RELATIVE ON COUNT HIGH

—I2 [32 bits]R1.0-31CCBALSIHNADD LOGICAL WITH SIGNED IMMEDIATE HIGH

—I2 [32 bits]R1.0-31CCAALSIHADD LOGICAL WITH SIGNED IMMEDIATE HIGH

R3.32-63R2.0-32R1.0-31B9DAALHHLRADD LOGICAL HIGH

R3.0-31R2.0-32R1.0-31B9CAALHHHRADD LOGICAL HIGH

I2 [32 bits]

R2.0-31

R2.0-31

2nd Operand

R1.0-31

R1.0-31

R1.0-31

1st Operand

CC8

B9D8

B9C8

OpCode 3rd OperandMnemonicInstruction

R3.0-31AHHHRADD HIGH

R3.32-63AHHLRADD HIGH

—AIHADD HIGH IMMEDIATE

Explanation:

— Not applicable

I2 Second operand is an immediate value

RI2 Second operand is a relative-immediate branch location

Rn Register operand ‘n’

S20 Storage operand designated by base and index registers with 20-bit signed long displacement

Index

This slide enumerates the first 12 instructions in the high-word facility; the remainder are listed on the
following slide. As will be immediately obvious, only a limited subset of the instructions are provided
to manipulate the high words: ADD, ADD LOGICAL, BRANCH RELATIVE ON COUNT, COMPARE,
COMPARE LOGICAL, LOAD BYTE, LOAD HALFWORD, LOAD, LOAD LOGICAL CHARACTER,
LOAD LOGICAL HALFWORD, ROTATE THEN INSERT SELECTED BITS, STORE CHARACTER,
STORE HALFWORD, STORE, SUBTRACT and SUBTRACT LOGICAL.

Note that many of the arithmetic-operand instructions have distinct operands; that is, the target
register is separate from the two source registers.

Also note that, of necessity, certain characters in the mnemonics have become a bit overloaded. The
rookie programmer will likely find using the high-word facility challenging. We hope the benefits will
be worth it.

6

6SHARE 115

High-Word Facility (3):

R3.32-63R2.0-31R1.0-31B9DBSLHHLRSUBTRACT LOGICAL HIGH

R3.0-31R2.0-31R1.0-31B9CBSLHHHRSUBTRACT LOGICAL HIGH

R3.32-63R2.0-31R1.0-31B9D9SHHLRSUBTRACT HIGH

R3.0-31R2.0-31R1.0-31B9C9SHHHRSUBTRACT HIGH

—S20 [32 bits]R1.0-31E3CBSTFHSTORE HIGH

—S20 [16 bits]R1.16-31E3C7STHHSTORE HALFWORD HIGH

—S20 [8 bits]R1.24-31E3C3STCHSTORE CHARACTER HIGH

I3, I4, I5R2.0-63R1.32+I3: - 32+I4EC51RISBLGROTATE THEN INSERT SELECTED BITS LOW

I3, I4, I5R2.0-63R1.I3-I4EC5DRISBHGROTATE THEN INSERT SELECTED BITS HIGH

—S20 [16 bits]R1.16-31E3C6LLHHLOAD LOGICAL HALFWORD HIGH

—S20 [8 bits]R1.24-31E3C2LLCHLOAD LOGICAL CHARACTER HIGH

—S20 [32 bits]R1.0-31E3CALFHLOAD HIGH

—S20 [16 bits]R1.16-31E3C4LHHLOAD HALFWORD HIGH

—S20 [8 BITS]R1.24-31E3C0LBHLOAD BYTE HIGH

—I2 [32 bits]R1.0-31CCFCLIHCOMPARE LOGICAL IMMEDIATE HIGH

S20 [32 bits]

R2.32-63

R2.0-31

2nd Operand

R1.0-31

R1.0-31

R1.0-31

1st Operand

E3CF

B9DF

B9CF

OpCode OtherMnemonicInstruction

—CLHHRCOMPARE LOGICAL HIGH

—CLHLRCOMPARE LOGICAL HIGH

—CLHFCOMPARE LOGICAL HIGH

Index

This slide lists the remaining 18 instructions in the high-word facility, for a total of 30 instructions.

7

7SHARE 115

ADD HIGH (AHHHR)

B9C8
AHHHR R1,R2,R3 [RRF]

R1 R2R3 ////

R3.0-31 //////// //////// //////// ////////R3

Index

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

R2.0-31 //////// //////// //////// ////////R2

R1.0-31 //////// //////// //////// ////////R1

+

=

For ADD HIGH (AHHHR), the contents of the leftmost bits (0-31) of the general register designated
by the R3 field of the instruction are added to the contents of the leftmost bits of the general register
designated by the R2 field of the instruction. The results of the addition replace the leftmost bits of the
general register designated by the R1 field of the instruction; bits 32-63 of the result register remain
unchanged.

The addition proceeds exactly as for ADD (AR), except that there are two source operands and a
separate target operand – and, obviously, the result ends up in the left of the register.

The condition code is set as with any other signed addition operation.

8

8SHARE 115

ADD HIGH (AHHLR)

B9D8
AHHLR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

//////// //////// //////// //////// R3.32-63R3

R1.0-31 //////// //////// //////// ////////R1

+

=

Index

ADD HIGH (AHHLR) should perhaps be called ADD HIGH AND LOW.

The contents of the rightmost bits (32-63) of the general register designated by the R3 field of the
instruction are added to the contents of the leftmost bits (0-31) of the general register designated by
the R2 field of the instruction. The results of the addition replace the leftmost bits of the general
register designated by the R1 operand; bits 32-63 of the result register remain unchanged.

The condition code is set as with any other signed addition operation.

9

9SHARE 115

ADD IMMEDIATE HIGH (AIH)

CC

AIH R1,I2 [RIL]

R1 8

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

R1.0-31 //////// //////// //////// ////////R1

+

I2

Index

ADD IMMEDIATE HIGH (AIH) adds the contents of the 32-bit signed I2 field (bits 16-47 of the
instruction) with the contents of the leftmost bits (0-31) of the general register designated by the R1
field of the instruction. The results of the addition replace the leftmost bits of the general register
designated by the R1 operand; bits 32-63 of the result register remain unchanged.

Unlike ADD HIGH (AHHHR and AHHLR), the result replaces the leftmost bits of the first-operand
register.

The condition code is set as with any other signed addition operation.

10

10SHARE 115

ADD LOGICAL HIGH (ALHHHR)

B9CA
ALHHHR R1,R2,R3 [RRF]

R1 R2R3 ////

R3.0-31 //////// //////// //////// ////////R3

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

R2.0-31 //////// //////// //////// ////////R2

R1.0-31 //////// //////// //////// ////////R1

+

=

Index

For ADD LOGICAL HIGH (ALHHHR), the contents of the leftmost bits (0-31) of the general register
designated by the R3 field of the instruction are added to the contents of the leftmost bits of the
general register designated by the R2 field of the instruction. The results of the addition replace the
leftmost bits of the general register designated by the R1 field of the instruction; bits 32-63 of the
result register remain unchanged.

The addition proceeds exactly as for ADD LOGICAL (ALR), except that there are two source
operands and a separate target operand – and, obviously, the result ends up in the left of the
register.

The condition code is set as with any other unsigned addition operation.

11

11SHARE 115

ADD LOGICAL HIGH (ALHHLR)

B9DA
ALHHLR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

//////// //////// //////// //////// R3.32-63R3

R1.0-31 //////// //////// //////// ////////R1

+

=

Index

As with ADD HIGH (AHHLR), ADD LOGICAL HIGH (ALHHLR) should perhaps be called ADD
LOGICAL HIGH AND LOW.

The contents of the rightmost bits (32-63) of the general register designated by the R3 field of the
instruction are added to the contents of the leftmost bits (0-31) of the general register designated by
the R2 field of the instruction. The results of the addition replace the leftmost bits of the general
register designated by the R1 operand; bits 32-63 of the result register remain unchanged.

The condition code is set as with any other unsigned addition operation.

12

12SHARE 115

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(ALSIH)

CC

ALSIH R1,I2 [RIL]

R1 A

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

R1.0-31 //////// //////// //////// ////////R1

+

I2

Index

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (ALSIH) adds the contents of the 32-bit signed I2
field (bits 16-47 of the instruction) with the contents of the leftmost unsigned bits (0-31) of the general
register designated by the R1 field of the instruction. The results of the addition replace the leftmost
bits of the general register designated by the R1 operand; bits 32-63 of the result register remain
unchanged.

As with ADD IMMEDIATE HIGH, the result replaces the leftmost bits of the first-operand register.

The condition code is set as with any other unsigned addition operation!! Although having the second
operand be signed reduces the magnitude of the addend by a power of two, it also eliminates the
need to define a separate SUBTRACT LOGICAL IMMEDIATE instruction. To subtract, one simply
uses a negative second operand.

13

13SHARE 115

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH
(ALSIHN)

CC

ALSIHN R1,I2 [RIL]

R1 B

Condition Code is Unchanged !

R1.0-31 //////// //////// //////// ////////R1

+

I2

Index

ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (ALSIHN) is identical to ADD LOGICAL WITH
SIGNED IMMEDIATE HIGH (ALSIH), except that the condition code remains unchanged.

14

14SHARE 115

BRANCH RELATIVE ON COUNT HIGH (BRCTH)

CC R1 6 RI2

BRCTH R1,RI2 [RIL]

+x2

Condition Code is Unchanged

Branch Location

R1.0-31 //////// //////// //////// ////////R1

Zero?

Next Sequential Instruction

True

Relative BranchFalse

Current Instruction Address

PSW

R1.0-31 = R1.0-31 – 1

Index

BRANCH RELATIVE ON COUNT HIGH (BRCTH) is an analog to BRANCH RELATIVE AND
COUNT (BRCT). BRCTH works identically to BRCT, except that the decremented value (that is, the
counter) is in the leftmost bits of the general register designated by the R1 field of the instruction.

The rightmost 32 bits (32-63) of the counting register and the condition code remain unchanged.

15

15SHARE 115

COMPARE HIGH (CHHR)

B9CD
CHHR R1,R2 [RRE]

R1 R2//// ////

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

R2.0-31 //////// //////// //////// ////////R2

R1.0-31 //////// //////// //////// ////////R1

?

Index

For COMPARE HIGH (CHHR), the contents of the leftmost bits (0-31) of the general register
designated by the R2 field of the instruction are arithmetically compared with the contents of the
leftmost bits of the general register designated by the R1 field of the instruction. The rightmost 32 bits
of each register are ignored.

The condition code is set as with any other signed binary arithmetic comparison.

16

16SHARE 115

COMPARE HIGH (CHLR)

B9DD
CHLR R1,R2 [RRE]

R1 R2//// ////

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

//////// //////// //////// //////// R2.32-63R2

R1.0-31 //////// //////// //////// ////////R1

?

Index

For COMPARE HIGH (CHLR), the contents of the rightmost bits (32-63) of the general register
designated by the R2 field of the instruction are arithmetically compared with the contents of the
leftmost bits (0-31) of the general register designated by the R1 field of the instruction. The rightmost
32 bits of general register R1 and the leftmost 32 bits of general register R2 are ignored.

The condition code is set as with any other signed binary arithmetic comparison.

17

17SHARE 115

COMPARE HIGH (CHF)

E3 B2R1

CHF R1,D2(X2,B2) [RXY]

DL2 DH2 CDX2

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 --

32-Bits (in storage)R1.0-31 //////// //////// //////// ////////R1

?

Index

COMPARE HIGH (CHF) is an analog to the COMPARE (C) instruction; the difference being that for
CHF, the leftmost 32 bits of the register are compared.

The 32-bit second operand in storage is arithmetically compared with the contents of the leftmost bits
of the general register designated by the R1 field of the instruction. The rightmost 32 bits of general
register R1 are ignored.

The condition code is set as with any other signed binary arithmetic comparison.

18

18SHARE 115

COMPARE IMMEDIATE HIGH (CIH)

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

R1.0-31 //////// //////// //////// ////////R1

?

CC R1 D I2

CIH R1,I2 [RIL]

Index

COMPARE IMMEDIATE HIGH (CIH) is an analog to the COMPARE IMMEDIATE (CFI) instruction;
the difference being that for CIH, the leftmost 32 bits of the register are compared. (CFI was
introduced with the general-instruction extension facility in the System z10.)

The 32-bit second immediate field (bits 16-47) of the instruction is arithmetically compared with the
contents of the leftmost bits of the general register designated by the R1 field of the instruction. The
rightmost 32 bits of general register R1 are ignored.

The condition code is set as with any other signed binary arithmetic comparison.

19

19SHARE 115

COMPARE LOGICAL HIGH (CLHHR)

B9CF
CLHHR R1,R2 [RRE]

R1 R2//// ////

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

R2.0-31 //////// //////// //////// ////////R2

R1.0-31 //////// //////// //////// ////////R1

?

Index

COMPARE LOGICAL HIGH (CLHHR) is an analog to the COMPARE LOGICAL (CLR) instruction;
the difference being that for CLHHR, the leftmost 32 bits of the register are compared.

The contents of the leftmost bits (0-31) of the general register designated by the R2 field of the
instruction are logically compared with the contents of the leftmost bits of the general register
designated by the R1 field of the instruction. The rightmost 32 bits of each register are ignored.

The condition code is set as with any other unsigned binary arithmetic comparison.

20

20SHARE 115

COMPARE LOGICAL HIGH (CLHLR)

B9DF
CLHLR R1,R2 [RRE]

R1 R2//// ////

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

//////// //////// //////// //////// R2.32-63R2

R1.0-31 //////// //////// //////// ////////R1

?

Index

For COMPARE LOGICAL HIGH (CLHLR), the contents of the rightmost bits (32-63) of the general
register designated by the R2 field of the instruction are logically compared with the contents of the
leftmost bits (0-31) of the general register designated by the R1 field of the instruction. The rightmost
32 bits of general register R1 and the leftmost 32 bits of general register R2 are ignored.

The condition code is set as with any other unsigned binary arithmetic comparison.

21

21SHARE 115

COMPARE LOGICAL HIGH (CLHF)

E3 B2R1

CLHF R1,D2(X2,B2) [RXY]

DL2 DH2 CFX2

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 --

32-Bits (in storage)R1.0-31 //////// //////// //////// ////////R1

?

Index

COMPARE LOGICAL HIGH (CLHF) is an analog to the COMPARE LOGICAL (CL) instruction; the
difference being that for CLHF, the leftmost 32 bits of the register are compared.

The 32-bit second operand in storage is logically compared with the contents of the leftmost bits of
the general register designated by the R1 field of the instruction. The rightmost 32 bits of general
register R1 are ignored.

The condition code is set as with any other unsigned binary arithmetic comparison.

22

22SHARE 115

COMPARE LOGIGAL IMMEDIATE HIGH (CLIH)

Resulting Condition Code:
0 Operands equal
1 First operand low
2 First operand high
3 —

R1.0-31 //////// //////// //////// ////////R1

?

CC R1 F I2

CLIH R1,I2 [RIL]

Index

COMPARE LOGICAL IMMEDIATE HIGH (CLIH) is an analog to the COMPARE LOGICAL
IMMEDIATE (CLFI) instruction; the difference being that for CLIH, the leftmost 32 bits of the register
are compared. (CLFI was introduced with the general-instructions extension facility in the System
z10.)

The 32-bit second immediate field (bits 16-47) of the instruction is logically compared with the
contents of the leftmost bits of the general register designated by the R1 field of the instruction. The
rightmost 32 bits of general register R1 are ignored.

The condition code is set as with any other unsigned binary arithmetic comparison.

23

23SHARE 115

LOAD BYTE HIGH (LBH)

R1.0-31 //////// //////// //////// ////////R1

E3 B2R1

LBH R1,D2(X2,B2) [RXY]

DL2 DH2 C0X2

Stg.SSSSS … SSSSS

Condition Code is Unchanged

Index

LOAD BYTE HIGH (LBH) is the analog to the LOAD BYTE (LB), except that the results are placed in
the leftmost bits of the first-operand register. (LOAD BYTE (LB) was introduced with the long-
displacement facility in the z990.)

The byte in storage designated by the second-operand location is sign extended on the left and the
result is placed in bits 0-31 of the general register designated by the R1 field of the instruction.

24

24SHARE 115

LOAD HALFWORD HIGH (LHH)

R1.0-31 //////// //////// //////// ////////R1

E3 B2R1

LHH R1,D2(X2,B2) [RXY]

DL2 DH2 C4X2

Condition Code is Unchanged

StorageSSS … SSS

Index

LOAD HALFWORD HIGH (LHH) is the analog to the LOAD HALFWORD (LH), except that the
results are placed in the leftmost bits of the first-operand register.

The two-byte field in storage designated by the second-operand location is sign extended on the left
and the result is placed in bits 0-31 of the general register designated by the R1 field of the
instruction.

25

25SHARE 115

LOAD HIGH (LFH)

R1.0-31 //////// //////// //////// ////////R1

E3 B2R1

LFH R1,D2(X2,B2) [RXY]

DL2 DH2 CAX2

Condition Code is Unchanged

Storage

Index

LOAD HIGH (LFH) is the analog to the LOAD (L), except that the results are placed in the leftmost
bits of the first-operand register.

The four-byte field in storage designated by the second-operand location is placed in bits 0-31 of the
general register designated by the R1 field of the instruction.

26

26SHARE 115

LOAD LOGICAL CHARACTER HIGH (LLCH)

R1.0-31 //////// //////// //////// ////////R1

E3 B2R1

LLCH R1,D2(X2,B2) [RXY]

DL2 DH2 C2X2

Stg.000000 … 000000

Condition Code is Unchanged

Index

LOAD LOCICAL CHARACTER HIGH (LLCH) is the analog to the LOAD LOGICAL CHARACTER
(LLC), except that the results are placed in the leftmost bits of the first-operand register. (LOAD
LOGICAL CHARACTER (LLC) was introduced with the extended-immediate facility in the z9-109.)

The byte in storage designated by the second-operand location is zero extended on the left and the
result is placed in bits 0-31 of the general register designated by the R1 field of the instruction.

27

27SHARE 115

LOAD LOGICAL HALFWORD HIGH (LLHH)

R1.0-31 //////// //////// //////// ////////R1

E3 B2R1

LLHH R1,D2(X2,B2) [RXY]

DL2 DH2 C6X2

Condition Code is Unchanged

Storage0000 … 0000

Index

LOAD LOCICAL HALFWORD HIGH (LLHH) is the analog to the LOAD LOGICAL HALFWORD
(LLH), except that the results are placed in the leftmost bits of the first-operand register. (LOAD
LOGICAL HALFWORD (LLH) was introduced with the extended-immediate facility in the z9-109.)

The two bytes in storage designated by the second-operand location are zero extended on the left
and the result is placed in bits 0-31 of the general register designated by the R1 field of the
instruction.

28

28SHARE 115

ROTATE THEN INSERT SELECTED BITS HIGH
(RISBHG)

EC R1

RISBHG R1,R2,I3,I4[,I5] [RIE]

I5 5DR2 I4I3

R2.0-63R2

Rotated Second Operand

Rotated
Bits are
Inserted

into
Selected
Bits of 1st

Operand

Condition Code is Unchanged!

Remaining bits of 1st operand either:

• Left unchanged, or
• Set to zero

Depending on the Z control (bit 0 of
the I4 field)

Bits 32-63 of R1 unchanged
R1 Bits I3 to I4R1 //////// //////// //////// ////////

I3 I4

Index

ROTATE THEN INSERT SELECTED BITS HIGH (RISBHG) is the analog to ROTATE THEN
INSERT SELECTED BITS (RISBG), except that the results of RISBHG are limited to the leftmost bits
of general register R1. Note ROTATE THEN INSERT SELECTED BITS (RISBG) was introduced with
the general-instructions enhancement facility on the System z10.

All 64 bits of the second operand are rotated to the left by the number of bits specified in the fifth
operand (note, if the fifth operand is coded as a negative value, the rotation appears to occur to the
right).

The I3 and I4 fields of the instruction are used to specify a starting and ending bit position in the result
register (that is, the general register designated by the R1 field of the instruction). The selected bits of
the rotated second operand are inserted into the corresponding bits of the result register.

The remaining bits of the leftmost 32 bits of the result register are either left unchanged or set to
zeros, depending on whether the zero-remaining-bits control (bit 0 of the I3 field of the instruction) is
zero or one, respectively.

Unless the R1 and R2 fields designate the same register, the general register designated by the R2
field of the instruction remains unchanged. The rightmost 32 bits of the general register designated
by the R1 field always remain unchanged.

29

29SHARE 115

ROTATE THEN INSERT SELECTED BITS LOW
(RISBLG)

EC R1

RISBLG R1,R2,I3,I4[,I5] [RIE]

I5 51R2 I4I3

R2.0-63R2

Rotated Second Operand

Rotated
Bits are
Inserted

into
Selected
Bits of 1st

Operand

Condition Code is Unchanged!

Remaining bits of 1st operand either:

• Left unchanged, or
• Set to zero

Depending on the Z control (bit 0 of
the I4 field)

Bits 0-31 of R1 unchanged

I3 I4

R1 Bits 32+I3 to 32+I4R1 //////// //////// //////// ////////

Index

ROTATE THEN INSERT SELECTED BITS LOW (RISBLG) is the analog to ROTATE THEN INSERT
SELECTED BITS (RISBG), except that the results of RISBLG are limited to the rightmost bits of
general register R1. Note ROTATE THEN INSERT SELECTED BITS (RISBG) was introduced with
the general-instructions enhancement facility on the System z10.

All 64 bits of the second operand are rotated to the left by the number of bits specified in the fifth
operand (note, if the fifth operand is coded as a negative value, the rotation appears to occur to the
right).

The I3 and I4 fields of the instruction are used to specify a starting and ending bit position in the
rightmost 32 bits of the result register (that is, the general register designated by the R1 field of the
instruction). Although the values of the I3 and I4 fields are each encoded in a range of 0-31, the
effective bit positions in the 64-bit register are 32 bits higher. The selected (rightmost 32) bits of the
rotated second operand are inserted into the corresponding (rightmost 32) bits of the result register.

The remaining bits of the rightmost 32 bits of the result register are either left unchanged or set to
zeros, depending on whether the zero-remaining-bits control (bit 0 of the I3 field of the instruction) is
zero or one, respectively.

Unless the R1 and R2 fields designate the same register, the general register designated by the R2
field of the instruction remains unchanged. The leftmost 32 bits of the general register designated by
the R1 field always remain unchanged.

30

30SHARE 115

ROTATE THEN INSERT SELECTED BITS HIGH/LOW

Bits 2-7 of I5 field are rotate amount
► R2 bits rotate to the left; bits that rotate out of bit zero reenter at bit 63
► Negative amount effectively rotates to the right
► I5 field is optional – defaults to zero if not coded

Starting and ending bit positions of selected bits specified in bits 3-7 of
the I3 and I4 fields, respectively

► For RISBHG, I3 and I4 fields are appended on the left with a binary zero (0-31)
► For RISBLG, I3 and I4 fields are appended on the left with a binary one (32-63)
► When I3 > I4, wrap-around occurs

Bit 0 of the I4 field is the Zero-Remaining-Bits Control (Z):
► When Z is zero, remaining bits of R1 left unchanged
► When Z is one, remaining bits of R1 set to zero
► HLASM extended mnemonics: RISBHGZ, RISBLGZ

Condition code remains unchanged (different from RISBG)

Index

Note that for RISBHG, the I3 and I4 fields directly designate bits 0-31 of the result register. For
RISBLG, a binary one is implicitly appended to the left of the values coded in the I3 and I4 fields, thus
the effective bit positions in the result register are 32-63.

Unlike ROTATE THEN INSERT SELECTED BITS (RISBG), the ROTATE THEN INSERT
SELECTED BITS HIGH / LOW instructions do not set the condition code. This allows the instructions
to be used to implement pseudo-instructions (see the next slide).

31

31SHARE 115

ROTATE THEN INSERT SELECTED BITS HIGH/LOW:
Extended Mnemonics

RISBLGZ R1,R2,24,31,32LLCLHR R1,R2LOAD LOGICAL CHARACTER (LOW HIGH)

RISBHGZ R1,R2,24,31,32LLCHLR R1,R2LOAD LOGICAL CHARACTER (HIGH LOW)

RISBHGZ R1,R2,24,31LLCHHR R1,R2LOAD LOGICAL CHARACTER (HIGH HIGH)

RISBLGZ R1,R2,16,31,32LLHLHR R1,R2LOAD LOGICAL HALFWORD (LOW HIGH)

RISBHGZ R1,R2,16,31,32LLHHLR R1,R2LOAD LOGICAL HALFWORD (HIGH LOW)

RISBHGZ R1,R2,16,31LLHHHR R1,R2LOAD LOGICAL HALFWORD (HIGH HIGH)

RISBLGZ R1,R2,0,31,32LLHFR R1,R2LOAD (LOW HIGH)

RISBHGZ R1,R2,0,31,32LHLR R1,R2LOAD (HIGH LOW)

RISBHGZ R1,R2,0,31LHHR R1,R2LOAD (HIGH HIGH)

RISBHG / RISBLG Equiv.Extended MnemonicInstruction Name

Index

With ROTATE THEN INSERT SELECTED BITS HIGH and ROTATE THEN INSERT SELECTED
BITS LOW, a large group of other pseudo-instructions can be implemented, as illustrated on this
slide.

The High-Level Assembler provides extended mnemonics that implement these pseudo-instructions,
even though they are actually implemented with RISBHG and RISBLG.

32

32SHARE 115

ROTATE THEN * SELECTED BITS:
Extended Mnemonics

ROSBG R1,R2,32,63,32OLHR R1,R2OR (LOW HIGH)

ROSBG R1,R2,0,31,32OHLR R1,R2OR (HIGH LOW)

ROSBG R1,R2,0,31OHHR R1,R2OR (HIGH HIGH)

RXSBG R1,R2,32,63,32XLHR R1,R2EXCLUSIVE OR (LOW HIGH)

RXSBG R1,R2,0,31,32XHLR R1,R2EXCLUSIVE OR (HIGH LOW)

RXSBG R1,R2,0,31XHHR R1,R2EXCLUSIVE OR (HIGH HIGH)

RNSBG R1,R2,32,63,32NLHR R1,R2AND HIGH (LOW HIGH)

RNSBG R1,R2,0,31,32NHLR R1,R2AND HIGH (HIGH LOW)

RNSBG R1,R2,0,31NHHR R1,R2AND HIGH (HIGH HIGH)

R*SBG EquivalentExtended MnemonicInstruction Name

Index

The High-Level Assembler also provides pseudo-instructions to perform high-word logical operations
by using the ROTATE THEN AND SELECTED BITS, ROTATE THEN OR SELECTED BITS, and
ROTATE THEN EXCLUSIVE OR SELECTED BITS instructions (RNSBG, ROSBG, and RXSBG
were introduced with the System z10).

33

33SHARE 115

STORE CHARACTER HIGH (STCH)

E3 B2R1

STCH R1,D2(X2,B2) [RXY]

DL2 DH2 C3X2

Stg.

Condition Code is Unchanged

//////// //////// //////// ////////R1 //////// //////// //////// 24-31

Index

STORE CHARACTER HIGH (STCH) is the analog to STORE CHARACTER (STC), except that the
byte stored is in bits 24-31 of the general register designated by the R1 field of the instruction.

Bits 24-31 of general register R1 are placed into the byte in storage designated by the second-
operand location.

34

34SHARE 115

STORE HALFWORD HIGH (STHH)

E3 B2R1

STHH R1,D2(X2,B2) [RXY]

DL2 DH2 C7X2

Storage

Condition Code is Unchanged

//////// //////// //////// ////////R1 //////// //////// R1.16-31

Index

STORE HALFWORD HIGH (STHH) is the analog to STORE HALFWORD (STH), except that the two
bytes stored are in bits 16-31 of the general register designated by the R1 field of the instruction.

Bits 16-31 of general register R1 are placed into the two bytes in storage designated by the second-
operand location.

35

35SHARE 115

STORE HIGH (STFH)

E3 B2R1

STFH R1,D2(X2,B2) [RXY]

DL2 DH2 CBX2

Storage

Condition Code is Unchanged

//////// //////// //////// ////////R1 R1.0-31

Index

STORE HIGH (STFH) is the analog to STORE (ST), except that the four bytes stored are in bits 0-31
of the general register designated by the R1 field of the instruction.

Bits 0-31 of general register R1 are placed into the four bytes in storage designated by the second-
operand location.

36

36SHARE 115

SUBTRACT HIGH (SHHHR)

B9C9
SHHHR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

R3.0-31 //////// //////// //////// ////////R3

R1.0-31 //////// //////// //////// ////////R1

–

=

Index

For SUBTRACT HIGH (SHHHR), the contents of the leftmost bits (0-31) of the general register
designated by the R3 field of the instruction are arithmetically subtracted from the contents of the
leftmost bits of the general register designated by the R2 field of the instruction. The difference
replaces the leftmost bits of the general register designated by the R1 field of the instruction; bits 32-
63 of the result register remain unchanged.

The subtraction proceeds exactly as for SUBTRACT (SR), except that there are two source operands
and a separate target operand – and, obviously, the result ends up in the leftmost 32 bits of the
register.

The condition code is set as with any other signed subtraction operation.

37

37SHARE 115

SUBTRACT HIGH (SHHLR)

B9D9
SHHLR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

//////// //////// //////// //////// R3.32-63R3

R1.0-31 //////// //////// //////// ////////R1

–

=

Index

SUBTRACT HIGH (SHHLR) should perhaps be called SUBTRACT LOW FROM HIGH.

The contents of the rightmost bits (32-63) of the general register designated by the R3 field of the
instruction are arithmetically subtracted from the contents of the leftmost bits (0-31) of the general
register designated by the R2 field of the instruction. The difference replaces the leftmost bits of the
general register designated by the R1 operand; bits 32-63 of the result register remain unchanged.

The condition code is set as with any other signed addition operation.

38

38SHARE 115

SUBTRACT LOGICAL HIGH (SLHHHR)

B9CB
SLHHHR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 —
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

R3.0-31 //////// //////// //////// ////////R3

R1.0-31 //////// //////// //////// ////////R1

–

=

Index

For SUBTRACT LOGICAL HIGH (SLHHHR), the contents of the leftmost bits (0-31) of the general
register designated by the R3 field of the instruction are logically subtracted from the contents of the
leftmost bits of the general register designated by the R2 field of the instruction. The difference
replaces the leftmost bits of the general register designated by the R1 field of the instruction; bits 32-
63 of the result register remain unchanged.

The subtraction proceeds exactly as for SUBTRACT LOGICAL (SLR), except that there are two
source operands and a separate target operand – and, obviously, the result ends up in the leftmost
32 bits of the register.

The condition code is set as with any other unsigned addition operation.

39

39SHARE 115

SUBTRACT LOGICAL HIGH (SLHHLR)

B9DB
SLHHLR R1,R2,R3 [RRF]

R1 R2R3 ////

R2.0-31 //////// //////// //////// ////////R2

Resulting Condition Code:
0 —
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

//////// //////// //////// //////// R3.32-63R3

R1.0-31 //////// //////// //////// ////////R1

–

=

Index

As with SUBTRACT HIGH (SHHLR), SUBTRCT LOGICAL HIGH (SLHHLR) should perhaps be
called SUBTRACT LOGICAL LOW FROM HIGH.

The contents of the rightmost bits (32-63) of the general register designated by the R3 field of the
instruction are logically subtracted from the contents of the leftmost bits (0-31) of the general register
designated by the R2 field of the instruction. The difference replaces the leftmost bits of the general
register designated by the R1 operand; bits 32-63 of the result register remain unchanged.

The condition code is set as with any other unsigned addition operation.

40

40SHARE 115

Interlocked-Access Facility (1)

Suite of instructions to perform interlocked-update operations on various storage
operands

► LOAD AND ADD

► LOAD AND ADD LOGICAL

► LOAD AND AND

► LOAD AND EXCLUSIVE OR

► LOAD AND OR

► LOAD PAIR DISJOINT

Changes to existing instructions to provide interlocked update when operands are
aligned on an integral boundary

► ADD IMMEDIATE (ASI, AGSI)

► ADD LOGICAL WITH SIGNED IMMEDIATE (ALSI, ALGSI)

Installation of the interlocked-access facility (& al.) indicated by facility bit 45

Index

The interlocked-access facility provides instructions that are designed to facilitate multiprogramming;
most of the instructions access memory in a block-concurrent, interlocked-update fashion (more
details on the next slides).

Also, when the interlocked-access facility is installed, the ADD IMMEDIATE (ASI and AGSI) and
ADD LOGICAL WITH SIGNED IMMEDIATE (ALSI and ALGSI) perform their storage accesses using
block-concurrent, interlocked update when the storage operand is aligned on an integral boundary.
Thus, as observed by other CPUs and the channel subsystem, the fetch, addition, and store of the
result appear to occur atomically … there is no need for a COMPARE AND SWAP loop to perform
these operations!

41

41SHARE 115

Interlocked-Access Facility (2):

R3.0-63
R3+1.0-63

S12 [32 bits]S12 [32 bits]C85LPDGLOAD PAIR DISJOINT

R3.32-63
R3+1.32-63

S12 [32 bits]S12 [32 bits]C84LPDLOAD PAIR DISJOINT

R3.0-63S12 [64 bits]R1.0-63EBE6LAOGLOAD AND OR

R3.32-63S12 [32 bits]R1.32-63EBF6LAOLOAD AND OR

R3.0-63S12 [64 bits]R1.0-63EBE7LAXGLOAD AND EXCLUSIVE OR

R3.32-63S12 [32 bits]R1.32-63EBF7LAXLOAD AND EXCLUSIVE OR

R3.0-63S12 [64 bits]R1.0-63EBE4LANGLOAD AND AND

R3.32-63S12 [32 bits]R1.32-63EBF4LANLOAD AND AND

R3.0-63S12 [64 bits]R1.0-63EBEALAALGLOAD AND ADD LOGICAL

S12 [32 bits]

S12 [64 bits]

S12 [32 bits]

2nd Operand

R1.32-63

R1.0-63

R1.32-63

1st Operand

EBFA

EBE8

EBF8

OpCode 3rd OperandMnemonicInstruction

R3.32-63LAALOAD AND ADD

R3.0-63LAAGLOAD AND ADD

R3.32-63LAALLOAD AND ADD LOGICAL

Explanation:

Rn Register operand ‘n’

S12 Storage operand designated by 12-bit unsigned displacement

Index

The interlocked-access facility comprises two types of arithmetic operations (signed addition and
unsigned addition), and three types of logical operations (AND, OR and XOR). For each of these
operations. For each of these five operations, the instruction performs the following:

1. The second-operand storage location is fetched.

2. An operation is performed using the contents of the third-operand register and the storage
location, with the result being placed into the storage location. The access of the storage location
(beginning with the fetch in step 1, through the store in this step) is performed as a block-
concurrent, interlocked update (that is, it’s atomic).

3. The original second-operand value (prior to any modification in step 2) is placed in the first-
operand register.

The illustrative sequence of the operation shown on the following slides differs somewhat from that
described here, however the result is the same.

The facility also includes an operation to access two discrete storage locations, providing an
indication as to whether any other CPU altered one of the locations during the fetch.

For each of these operations, there is a 32-bit and a 64-bit version of the instruction.

42

42SHARE 115

LOAD AND ADD (LAA)

EB B2R1

LAA R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (32 bits)

Index

//////// //////// //////// //////// R1.32-63R1

//////// //////// //////// //////// R3.32-63R3

F8

Fetch and store of
second operand are
interlocked update!

Temporary

Step 2: Load

Step 1:
Copy

Step 3:
ADD

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

For LOAD AND ADD (LAA), the contents of bits 32-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the word in storage
designated by the second-operand location is fetched into bits 32-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 32-bit value is added to the
contents of the word in storage, and the result replaces the word in storage. As observed by other
CPUs and the channel subsystem, the fetching and storing of the word in storage appear to occur as
a block-concurrent interlocked update.

Alternatively, the word in storage may be fetched into a temporary location, the addition of that word
and general register R3 occurs, and then the temporary value place in general register R1.
Regardless of method, the fetching into a temporary location ensures that the result in general
register R1 is the original contents of the storage location (prior to the addition).

43

43SHARE 115

LOAD AND ADD (LAAG)

EB B2R1

LAAG R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (64 bits)

R1.0-63R1

E8

R3.0-63R3

Fetch and store of
second operand are
interlocked update!

Step 2: Load

Temporary

Step 1:
Copy

Step 3:
ADD

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Index

For LOAD AND ADD (LAAG), the contents of bits 0-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the doubleword in
storage designated by the second-operand location is fetched into bits 0-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 64-bit value is added to the
contents of the doubleword in storage, and the result replaces the doubleword in storage. As
observed by other CPUs and the channel subsystem, the fetching and storing of the doubleword in
storage appear to occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
doubleword in the CPU.

44

44SHARE 115

LOAD AND ADD LOGICAL (LAAL)

EB B2R1

LAAL R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (32 bits)

//////// //////// //////// //////// R1.32-63R1

//////// //////// //////// //////// R3.32-63R3

FA

Fetch and store of
second operand are
interlocked update!

Temporary

Step 2: Load

Step 1:
Copy

Step 3:
ADD

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Index

The operation of LOAD AND ADD LOGICAL (LAAL) is identical to that of LOAD AND ADD (LAA),
except for the setting of the condition code. LAAL sets the condition code consistent with other
unsigned additions.

45

45SHARE 115

LOAD AND ADD LOGICAL (LAALG)

EB B2R1

LAALG R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (64 bits)

R1.0-63R1

EA

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

R3.0-63R3

Fetch and store of
second operand are
interlocked update!

Step 2: Load

Temporary

Step 1:
Copy

Step 3:
ADD

Index

The operation of LOAD AND ADD LOGICAL (LAALG) is identical to that of LOAD AND ADD (LAAG),
except for the setting of the condition code. LAALG sets the condition code consistent with other
unsigned additions.

46

46SHARE 115

LOAD AND AND (LAN)

EB B2R1

LAN R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (32 bits)

//////// //////// //////// //////// R1.32-63R1

//////// //////// //////// //////// R3.32-63R3

F4

Fetch and store of
second operand are
interlocked update!

Temporary

Step 2: Load

Step 1:
Copy

Step 3:
AND

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND AND (LAN), the contents of bits 32-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the word in storage
designated by the second-operand location is fetched into bits 32-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 32-bit value is logically ANDed
with the contents of the word in storage, and the result replaces the word in storage. As observed by
other CPUs and the channel subsystem, the fetching and storing of the word in storage appear to
occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

47

47SHARE 115

LOAD AND AND (LANG)

EB B2R1

LANG R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (64 bits)

R1.0-63R1

E4

R3.0-63R3

Fetch and store of
second operand are
interlocked update!

Step 2: Load

Temporary

Step 1:
Copy

Step 3:
AND

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND AND (LANG), the contents of bits 0-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the doubleword in
storage designated by the second-operand location is fetched into bits 0-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 64-bit value is logically ANDed
with the contents of the doubleword in storage, and the result replaces the doubleword in storage. As
observed by other CPUs and the channel subsystem, the fetching and storing of the doubleword in
storage appear to occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

48

48SHARE 115

LOAD AND EXCLUSIVE OR (LAX)

EB B2R1

LAX R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (32 bits)

//////// //////// //////// //////// R1.32-63R1

//////// //////// //////// //////// R3.32-63R3

F7

Fetch and store of
second operand are
interlocked update!

Temporary

Step 2: Load

Step 1:
Copy

Step 3:
XOR

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND EXCLUSIVE OR (LAX), the contents of bits 32-63 of the general register designated
by the R3 field of the instruction are preserved in a temporary location in the CPU. Then the word in
storage designated by the second-operand location is fetched into bits 32-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 32-bit value is logically exclusive
ORed with the contents of the word in storage, and the result replaces the word in storage. As
observed by other CPUs and the channel subsystem, the fetching and storing of the word in storage
appear to occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

49

49SHARE 115

LOAD AND EXCLUSIVE OR (LAXG)

EB B2R1

LAXG R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (64 bits)

R1.0-63R1

E7

R3.0-63R3

Fetch and store of
second operand are
interlocked update!

Step 2: Load

Temporary

Step 1:
Copy

Step 3:
XOR

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND EXCLUSIVE OR (LAXG), the contents of bits 0-63 of the general register designated
by the R3 field of the instruction are preserved in a temporary location in the CPU. Then the
doubleword in storage designated by the second-operand location is fetched into bits 0-63 of the
general register designated by the R1 field of the instruction. Finally, the temporary 64-bit value is
logically exclusive ORed with the contents of the doubleword in storage, and the result replaces the
doubleword in storage. As observed by other CPUs and the channel subsystem, the fetching and
storing of the doubleword in storage appear to occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

50

50SHARE 115

LOAD AND OR (LAO)

EB B2R1

LAO R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (32 bits)

//////// //////// //////// //////// R1.32-63R1

//////// //////// //////// //////// R3.32-63R3

F6

Fetch and store of
second operand are
interlocked update!

Temporary

Step 2: Load

Step 1:
Copy

Step 3:
OR

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND OR (LAO), the contents of bits 32-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the word in storage
designated by the second-operand location is fetched into bits 32-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 32-bit value is logically ORed with
the contents of the word in storage, and the result replaces the word in storage. As observed by other
CPUs and the channel subsystem, the fetching and storing of the word in storage appear to occur as
a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

51

51SHARE 115

LOAD AND OR (LAOG)

EB B2R1

LAOG R1,R3,D2(B2) [RSY]

DL2 DH2R3

Storage (64 bits)

R1.0-63R1

E6

R3.0-63R3

Fetch and store of
second operand are
interlocked update!

Step 2: Load

Temporary

Step 1:
Copy

Step 3:
OR

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For LOAD AND OR (LAOG), the contents of bits 0-63 of the general register designated by the R3
field of the instruction are preserved in a temporary location in the CPU. Then the doubleword in
storage designated by the second-operand location is fetched into bits 0-63 of the general register
designated by the R1 field of the instruction. Finally, the temporary 64-bit value is logically ORed with
the contents of the doubleword in storage, and the result replaces the doubleword in storage. As
observed by other CPUs and the channel subsystem, the fetching and storing of the doubleword in
storage appear to occur as a block-concurrent interlocked update.

See the description of LOAD AND ADD (LAA) for an explanation of the temporary buffering of the
word in the CPU.

52

52SHARE 115

LOAD PAIR DISJOINT (LPD)

C8 B1R3

LPD R3,D1(B1),D2(B2) [SSF]

D14

Resulting Condition Code:
0 Pair loaded by interlocked fetch
1 —
2 —
3 Pair not loaded by interlocked fetch

B2 D2

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R3+1.32-63R3+1

1st Operand (32 bits)

2nd Operand (32 bits)

Index

For LOAD PAIR DISJOINT (LPD), the first and second operands are two distinct words in storage.
The first and second operands are fetched into bits 32-63 of the even-odd general register pair
designated by the R3 field of the instruction; the first operand is fetched into the even-numbered
register, and the second operand is fetched into the odd-numbered register.

The condition code is set based on whether the pair of words were fetched without alteration by other
CPUs or the channel subsystem. CC0 means that neither word was altered during the fetching; CC3
means that one of the words was altered.

53

53SHARE 115

LOAD PAIR DISJOINT (LPDG)

C8 B1R3

LPDG R3,D1(B1),D2(B2) [SSF]

D15

Resulting Condition Code:
0 Pair loaded by interlocked fetch
1 —
2 —
3 Pair not loaded by interlocked fetch

B2 D2

R3.0-63R3

R3+1.0-63R3+1

1st Operand (64 bits)

2nd Operand (64 bits)

Index

For LOAD PAIR DISJOINT (LPDG), the first and second operands are two distinct doublewords in
storage. The first and second operands are fetched into bits 0-63 of the even-odd general register
pair designated by the R3 field of the instruction; the first operand is fetched into the even-numbered
register, and the second operand is fetched into the odd-numbered register.

The condition code is set based on whether the pair of doublewords were fetched without alteration
by other CPUs or the channel subsystem. CC0 means that neither doubleword was altered during
the fetching; CC3 means that one of the doublewords was altered.

54

54SHARE 115

Load/Store-on-Condition Facility

Provides means by which load and store operations
may be executed conditionally
M3 field determines action based on current PSW
condition code

RSY format – M3 field takes place of X2 field
HLASM provides extended mnemonics to use in lieu
of the M3 field

E, L, H, NE, NH, NL
Installation of the load/store-on-condition facility (& al.)
indicated by facility bit 45

Index

The load-and-store-on-condition facility provides a means of executing a load or store, subject to the
control of the condition code. Therefore, no branch instruction(s) are necessary to select the various
code paths that effect the loading or storing. Consider the following code fragment that implements a
min() function for four storage parameters:

LG 15,PARM1
CG 15,PARM2
JNL A
LG 15,PARM2

A CG 15,PARM3
JNL B
LG 15,PARM3

B CG 15,PARM4
JNL C
LG 15,PARM4

C …

With the load-and-store-on-condition facility, equivalent function can be realized without all the
branching instructions, as follows

LG 15,PARM1
CG 15,PARM2
LOCG 15,PARM2,B’0100’ (or LOCGL 15,PARM2)
CG 15,PARM3
LOCG 15,PARM3,B’0100’ (or LOCGL 15,PARM3)
CG 15,PARM4
LOCG 15,PARM4,B’0100’ (or LOCGL 15,PARM4)

55

55SHARE 115

Load/Store-on-Condition Facility

Condition MaskS20 [64 bits]R1.0-63EBE3STOCGSTORE ON CONDITION

Condition MaskS20 [32 bits]R1.32-63EBF3STOCSTORE ON CONDITION

Condition MaskS20 [64 bits]R1.0-63EBE2LOCGLOAD ON CONDITION

S20 [32 bits]

R2.0-63

R2.32-63

2nd Operand

R1.32-63

R1.0-63

R1.32-63

1st Operand

EBF2

B9E2

B9F2

OpCode 3rd OperandMnemonicInstruction

Condition MaskLOCRLOAD ON CONDITION

Condition MaskLOCGRLOAD ON CONDITION

Condition MaskLOCLOAD ON CONDITION

Explanation:

Rn Register operand ‘n’

S20 Storage operand designated by base register with 20-bit signed long displacement

Index

For LOAD ON CONDITION, there are two forms of second operand: one source is a register and the
other is a storage operand. For STORE ON CONDITION, the second operand is a storage operand.
For each of these, there is an instruction that operates on 32-bit values and one that operates on 64-
bit values.

As noted on the previous slide, the High-Level Assembler implements extended mnemonics for the
load-and-store-on-condition facility. The extended mnemonic is formed by adding a suffix to one of
the six basic mnemonics. When an extended mnemonic is coded, the conditional mask operand (the
M3 field) is not coded.

The extended mnemonics represent the conditions that would be expected after a comparison
operation: E, H, L, NE, NH, and NL. As the expected usage is following a compare instruction,
HLASM does not provide extended mnemonics for other conditions (particularly CC3). However, the
programmer can specify these conditions by using the M3 field.

56

56SHARE 115

LOAD ON CONDITION (LOCR)

Index

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

LOCR R1,R2M3 [RRF]

B9F2 R1 R2M3 ////

//////// //////// //////// //////// R1.32-63R1

False

//////// //////// //////// //////// R2.32-63R2

This slide illustrates the operation of LOAD ON CONDITION (LOCR).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, bits 32-63 of the general register specified by the R2 field of the instruction are copied into the
corresponding bits of the general register specified by the R1 field; bits 0-31 of the register specified
by the R1 field remain unchanged.

If the condition specified by the M3 field (or extended mnemonic) is not true, all bits in the general
register specified by the R1 field remain unchanged.

57

57SHARE 115

LOAD ON CONDITION (LOCGR)

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

LOCGR R1,R2,M3 [RRF]

False

R1.0-63R1

B9E2 R1 R2M3 ////

R2.0-63R2

Index

This slide illustrates the operation of LOAD ON CONDITION (LOCGR).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, bits 0-63 of the general register specified by the R2 field of the instruction are copied into the
corresponding bits of the general register specified by the R1 field.

If the condition specified by the M3 field (or extended mnemonic) is not true, all bits in the general
register specified by the R1 field remain unchanged.

58

58SHARE 115

LOAD ON CONDITION (LOC)

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

EB B2R1

LOC R1,D2(B2),M3 [RSY]

DL2 DH2 F2M3

//////// //////// //////// //////// R1.32-63R1

2nd Operand (32 bits)

False

Index

This slide illustrates the operation of LOAD ON CONDITION (LOC).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, the four bytes designated by the second-operand location are copied into bits 32-63 of the
general register specified by the R1 field; bits 0-31 of the register remain unchanged.

If the condition specified by the M3 field (or extended mnemonic) is not true, all bits in the general
register specified by the R1 field remain unchanged.

59

59SHARE 115

LOAD ON CONDITION (LOCG)

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

EB B2R1

LOCG R1,D2(B2),M3 [RSY]

DL2 DH2 E2M3

2nd Operand (64 bits)

False

R1.0-63R1

Index

This slide illustrates the operation of LOAD ON CONDITION (LOCG).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, the eight bytes designated by the second-operand location are copied into bits 0-63 of the
general register specified by the R1 field.

If the condition specified by the M3 field (or extended mnemonic) is not true, all bits in the general
register specified by the R1 field remain unchanged.

60

60SHARE 115

STORE ON CONDITION (STOC)

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

EB B2R1

STOC R1,D2(B2),M3 [RSY]

DL2 DH2 F3M3

//////// //////// //////// //////// R1.32-63R1

2nd Operand (32 bits)

False

Index

This slide illustrates the operation of STORE ON CONDITION (STOC).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, bits 32-63 of the general register specified by the R1 field are stored at the four-byte second-
operand location.

If the condition specified by the M3 field (or extended mnemonic) is not true, no store operation
occurs.

61

61SHARE 115

STORE ON CONDITION (STOCG)

Condition Code is Unchanged

M3 bit
corresponding

to PSW CC
=1?

Next Sequential Instruction

True

EB B2R1

STOCG R1,D2(B2),M3 [RSY]

DL2 DH2 E3M3

2nd Operand (64 bits)

False

R1.0-63R1

Index

This slide illustrates the operation of STORE ON CONDITION (STOCG).

If the condition specified in the M3 field of the instruction (or specified by the extended mnemonic) is
true, bits 0-63 of the general register specified by the R1 field are stored at the eight-byte second-
operand location

If the condition specified by the M3 field (or extended mnemonic) is not true, no store operation
occurs.

62

62SHARE 115

Distinct-Operands Facility (1)

Suite of instructions to provide nondestructive analogs to existing destructive
instructions

► Target register is separate from source registers

► Nondestructive instructions provided for:
ADD OR
ADD LOGICAL SHIFT LEFT
ADD LOG. w/SIGN. IMMED. SHIFT RIGHT
AND SUBTRACT
EXCLUSIVE OR SUBTRACT LOGICAL

Intended to provide register-constraint relief for compilers

Installation of the distinct-operands facility (& al.) indicated by facility bit 45

Index

Beginning with the original System/360, the architecture has a long tradition of performing arithmetic
or logical operations on two source operands, and then replacing one of the source operands with
the result. This was completely understandable for RR-format instructions, where the instruction
format only had room for two registers.

With the advent of newer instruction formats, there is sufficient space for separate source and target
operand specifications. z/Architecture began exploiting this with the 64-bit shift operations, and the
decimal-floating-point facility extended the practice by having the results of floating point
computations placed in a register that can be distinct from the two source registers.

Having a separate destination operand register provides greater flexibility to compiler designers and
assembler programmers. When a source operand needs to be preserved, extra instructions are not
needed to perform a copying operation.

The distinct-operands facility introduces a series of arithmetic and logical instructions that have a
result register that can be distinct from any of the source operands. For all of the instructions, the first
(result) and third (source) operands are in a register; depending on the instruction, the second
operand is a register, immediate field, or storage-type operand.

All of the distinct-operand-facility instructions have a suffix of “K” in the mnemonic.

63

63SHARE 115

Distinct-Operands Facility (2):

R3.0-63R2.0-63R1.0-63B9E4NGRKAND

R3.32-63R2.32-63R1.32-63B9F4NRKAND

R3.0-63I2R1.0-63ECDBALGHSIKADD LOGICAL WITH SIGNED IMMEDIATE

R3.32-63I2R1.32-63ECDAALHSIKADD LOGICAL WITH SIGNED IMMEDIATE

R3.0-63R2.0-63R1.0-63B9EAALGRKADD LOGICAL

R3.32-63R2.32-63R1.32-63B9FAALRKADD LOGICAL

R3.0-63I2R1.0-63ECD9AGHIKADD IMMEDIATE

I2

R2.0-63

R2.32-63

2nd Operand

R1.32-63

R1.0-63

R1.32-63

1st Operand

ECD8

B9E8

B9F8

OpCode 3rd OperandMnemonicInstruction

R3.32-63ARKADD

R3.0-63AGRKADD

R3.32-63AHIKADD IMMEDIATE

Explanation:

I2 Second operand is a 16-bit signed immediate value

Rn Register operand ‘n’

Index

This slide introduces the various ADD and AND instructions in the distinct-operand facility.

For the ADD instructions, the second operand is either a register or immediate field. For the AND,
OR, and XOR instructions, the second operand is always a register.

64

64SHARE 115

Distinct-Operands Facility (3):

R3.32-63S20R1.32-63EBDCSRAKSHIFT RIGHT SINGLE

R3.32-63S20R1.32-63EBDDSLAKSHIFT LEFT SINGLE

R3.0-63R2.0-63R1.0-63B9EBSLGRKSUBTRACT LOGICAL

R3.32-63R2.32-63R1.32-63B9FBSLRKSUBTRACT LOGICAL

R3.0-63R2.0-63R1.0-63B9E9SGRKSUBTRACT

R3.32-63R2.32-63R1.32-63B9F9SRKSUBTRACT

R3.32-63S20R1.32-63EBDESRLKSHIFT RIGHT SINGLE LOGICAL

R3.32-63S20R1.32-63EBDFSLLKSHIFT LEFT SINGLE LOGICAL

R3.0-63R2.0-63R1.0-63B9E6OGRKOR

R2.32-63

R2.0-63

R2.32-63

2nd Operand

R1.32-63

R1.0-63

R1.32-63

1st Operand

B9F6

B9E7

B9F7

OpCode 3rd OperandMnemonicInstruction

R3.32-63XRKEXCLUSIVE OR

R3.0-63XGRKEXCLUSIVE OR

R3.32-63ORKOR

Explanation:

I2 Second operand is a 16-bit signed immediate value

Rn Register operand ‘n’

S20 Address designated by base register with 20-bit signed long displacement

Index

This slide enumerates the remaining instructions in the distinct-operand facility.

For the SHIFT instructions, the second operand is not used to access storage; rather, the rightmost
six bits of the second-operand address form the shift amount (just like any other shift operation).

65

65SHARE 115

ADD (ARK)

B9F8
ARK R1,R2,R3 [RRF]

R1 R2R3 ////

Index

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R1.32-63R1

For ADD (ARK), the second operand is added to the third operand, and the result is placed in the first
operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the general register designated
by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all signed addition instructions.

66

66SHARE 115

ADD (AGRK)

B9E8
AGRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

R1.0-63R1

R2.0-63R2

R3.0-63R3

Index

For ADD (AGRK), the second operand is added to the third operand, and the result is placed in the
first operand. Each operand occupies all 64 bits of the general register designated by the
corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all signed addition instructions.

67

67SHARE 115

ADD IMMEDIATE (AHIK)

EC R1

AHIK R1,R3,I2 [RIE]

I2 //// //// D8R3

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

I2

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

SSS … SSS

Index

For ADD IMMEDIATE (AHIK), the 16-bit signed binary integer in the I2 field of the instruction is sign
extended on the left to form a 32-bit signed value which is added to the third operand. The result of
this addition is placed in the first operand. The first and third operands occupy the rightmost 32 bits
(bits 32-63) of the general registers designated by the R1 and R3 fields of the instruction,
respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The condition code is set as with all signed addition instructions.

68

68SHARE 115

ADD IMMEDIATE (AGHIK)

EC R1

AGHIK R1,R3,I2 [RIE]

I2 //// //// D9R3

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

I2SSSSSSSSSSS … SSSSSSSSSSS

R3.0-63R3

R1.0-63R1

Index

For ADD IMMEDIATE (AGHIK), the 16-bit signed binary integer in the I2 field of the instruction is sign
extended on the left to form a 64-bit signed value which is added to the third operand. The result of
this addition is placed in the first operand. The first and third operands occupy all 64 bits of the
general registers designated by the R1 and R3 fields of the instruction, respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged.

The condition code is set as with all signed addition instructions.

69

69SHARE 115

ADD LOGICAL (ALRK)

B9FA
ALRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

+

=

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R1.32-63R1

Index

For ADD LOGICAL (ALRK), the second operand is added to the third operand, and the result is
placed in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the general
register designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all unsigned addition instructions.

70

70SHARE 115

ADD LOGICAL (ALGRK)

B9EA
ALGRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

+

=

R1.0-63R1

R2.0-63R2

R3.0-63R3

Index

For ADD LOGICAL (ALGRK), the second operand is added to the third operand, and the result is
placed in the first operand. Each operand occupies all 64 bits of the general register designated by
the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged.

The condition code is set as with all unsigned addition instructions.

71

71SHARE 115

ADD LOGICAL WITH SIGNED IMMEDIATE (ALHSIK)

EC R1

ALHSIK R1,R3,I2 [RIE]

I2 //// //// DAR3

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

I2

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

SSS … SSS

Index

For ADD LOGICAL WITH SIGNED IMMEDIATE (ALHSIK), the 16-bit signed binary integer in the I2
field of the instruction is sign extended on the left to form a 32-bit signed value which is added to the
third operand. The result of this addition is placed in the first operand. The first and third operands
occupy the rightmost 32 bits (bits 32-63) of the general registers designated by the R1 and R3 fields
of the instruction, respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The condition code is set as with all unsigned addition instructions.

72

72SHARE 115

ADD LOGICAL WITH SIGNED IMMEDIATE (ALGHSIK)

EC R1

ALGHSIK R1,R3,I2 [RIE]

I2 //// //// DBR3

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

+

=

I2SSSSSSSSSSS … SSSSSSSSSSS

R3.0-63R3

R1.0-63R1

Index

For ADD LOGICAL WITH SIGNED IMMEDIATE (ALGHSIK), the 16-bit signed binary integer in the I2
field of the instruction is sign extended on the left to form a 64-bit signed value which is added to the
third operand. The result of this addition is placed in the first operand. The first and third operands
occupy all 64 bits of the general registers designated by the R1 and R3 fields of the instruction,
respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged.

The condition code is set as with all unsigned addition instructions.

73

73SHARE 115

AND (NRK)

B9F4
NRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

AND

=

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R1.32-63R1

Index

For AND (NRK), the second operand is logically ANDed with the third operand, and the result is
placed in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the general
register designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all common logical-operation instructions.

74

74SHARE 115

AND (NGRK)

B9E4
NGRK R1,R2,R3 [RRF]

R1 R2R3 ////

AND

=

R1.0-63R1

R2.0-63R2

R3.0-63R3

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For AND (NGRK), the second operand is logically ANDed with the third operand, and the result is
placed in the first operand. Each operand occupies all 64 bits of the general register designated by
the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all common logical-operation instructions.

75

75SHARE 115

EXCLUSIVE OR (XRK)

B9F7
XRK R1,R2,R3 [RRF]

R1 R2R3 ////

Index

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

XOR

=

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R1.32-63R1

For EXCLUSIVE OR (XRK), the second operand is logically exclusive-ORed with the third operand,
and the result is placed in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63)
of the general register designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all common logical-operation instructions.

76

76SHARE 115

EXCLUSIVE OR (XGRK)

B9E7
XGRK R1,R2,R3 [RRF]

R1 R2R3 ////

XOR

=

R1.0-63R1

R2.0-63R2

R3.0-63R3

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For EXCLUSIVE OR (XGRK), the second operand is logically exclusive-ORed with the third operand,
and the result is placed in the first operand. Each operand occupies all 64 bits of the general register
designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all common logical-operation instructions.

77

77SHARE 115

OR (ORK)

B9F6
ORK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

OR

=

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R1.32-63R1

Index

For OR (XRK), the second operand is logically ORed with the third operand, and the result is placed
in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the general register
designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all common logical-operation instructions.

78

78SHARE 115

OR (OGRK)

B9E6
OGRK R1,R2,R3 [RRF]

R1 R2R3 ////

OR

=

R1.0-63R1

R2.0-63R2

R3.0-63R3

Resulting Condition Code:
0 Result zero
1 Result not zero
2 —
3 —

Index

For OR (XGRK), the second operand is logically ORed with the third operand, and the result is
placed in the first operand. Each operand occupies all 64 bits of the general register designated by
the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all common logical-operation instructions.

79

79SHARE 115

SHIFT LEFT SINGLE (SLAK)

EB B2R1

SLAK R1,R3,D2(B2) [RSY]

DL2 DH2 DDR3

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

Resulting Condition Code:
0 Result zero (no overflow)
1 Result less-than zero (no overflow)
2 Result greater-than zero (no overflow)
3 Overflow

For SHIFT LEFT SINGLE (SLAK), the 31-bit numeric part of the third operand is shifted left by the
number of bits specified by the second-operand address, and the result is placed in the first operand.
Zeros are supplied to the vacated bit positions on the right. The first and third operands are 32-bit
signed binary integers in bits 32-63 of the respective registers, with the sign in bit position 32.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The second-operand address is not used to address data; rather, its rightmost six bits indicate the
number of bit positions to be shifted. The remainder of the address is ignored.

The condition code is set based on whether the results are negative, zero, positive, or cause an
overflow. An overflow occurs if one or more bits are shifted left out of bit position 33; if the fixed-point-
overflow mask bit in the PSW is one, a fixed-point-overflow program interruption occurs.

80

80SHARE 115

SHIFT LEFT SINGLE LOGICAL (SLLK)

Condition Code is Unchanged

EB B2R1

SLLK R1,R3,D2(B2) [RSY]

DL2 DH2 DFR3

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

For SHIFT LEFT SINGLE LOGICAL (SLLK), the third operand is shifted left by the number of bits
specified by the second-operand address, and the result is placed in the first operand. Zeros are
supplied to the vacated bit positions on the right. The first and third operands are 32-bit unsigned
binary integers occupying the rightmost 32 bits (bits 32-63) of the general registers designated by the
R1 and R3 fields of the instruction, respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The second-operand address is not used to address data; rather, its rightmost six bits indicate the
number of bit positions to be shifted. The remainder of the address is ignored.

81

81SHARE 115

SHIFT RIGHT SINGLE (SRAK)

EB B2R1

SRAK R1,R3,D2(B2) [RSY]

DL2 DH2 DCR3

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

SSSSS …

Resulting Condition Code:
0 Result zero
1 Result less-than zero
2 Result greater-than zero
3 --

For SHIFT RIGHT SINGLE (SRAK), the 31-bit integer portion of the third operand is shifted right by
the number of bits specified by the second-operand address, and the result is placed in the first
operand. The first and third operands are 32-bit signed binary integers in bits 32-63 of the respective
registers, with the sign in bit position 32. The sign bit is supplied to the vacated bit positions on the
left.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The second-operand address is not used to address data; rather, its rightmost six bits indicate the
number of bit positions to be shifted. The remainder of the address is ignored.

The condition code is set based on whether the results are negative, zero, or positive.

82

82SHARE 115

SHIFT RIGHT SINGLE LOGICAL (SRLK)

Condition Code is Unchanged

EB B2R1

SRLK R1,R3,D2(B2) [RSY]

DL2 DH2 DER3

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

For SHIFT RIGHT SINGLE LOGICAL (SRLK), the third operand is shifted right by the number of bits
specified by the second-operand address, and the result is placed in the first operand. Zeros are
supplied to the vacated bit positions on the left. The first and third operands are 32-bit unsigned
binary integers occupying the rightmost 32 bits (bits 32-63) of the general registers designated by the
R1 and R3 fields of the instruction, respectively.

Unless the R1 field designates the same register as the R3 field, the contents of the general register
designated by the R3 field remains unchanged. The contents of bit positions 0-31 of the general
register designated by the R1 field always remains unchanged.

The second-operand address is not used to address data; rather, its rightmost six bits indicate the
number of bit positions to be shifted. The remainder of the address is ignored.

83

83SHARE 115

SUBTRACT (SRK)

B9F9
SRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

–

=

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

For SUBTRACT (SRK), the third operand is subtracted from the second operand, and the result is
placed in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the general
register designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 fields, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all signed subtraction instructions.

84

84SHARE 115

SUBTRACT (SGRK)

B9E9
SGRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

–

=

R1.0-63R1

R3.0-63R3

R2.0-63R2

Index

For SUBTRACT (SGRK), the third operand is subtracted from the second operand, and the result is
placed in the first operand. Each operand occupies all 64 bits of the general register designated by
the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 fields, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all signed subtraction instructions.

85

85SHARE 115

SUBTRACT LOGICAL (SLRK)

B9FB
SLRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 —
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

–

=

//////// //////// //////// //////// R2.32-63R2

//////// //////// //////// //////// R3.32-63R3

//////// //////// //////// //////// R1.32-63R1

Index

For SUBTRACT LOGICAL (SLRK), the third operand is subtracted from the second operand, and the
result is placed in the first operand. Each operand occupies the rightmost 32 bits (bits 32-63) of the
general register designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 field, the contents of the general
registers designated by the R2 and R3 fields remain unchanged. The contents of bit positions 0-31 of
the general register designated by the R1 field always remains unchanged.

The condition code is set as with all unsigned subtraction instructions.

86

86SHARE 115

SUBTRACT LOGICAL (SLGRK)

B9EB
SLGRK R1,R2,R3 [RRF]

R1 R2R3 ////

Resulting Condition Code:
0 —
1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

–

=

R1.0-63R1

R3.0-63R3

R2.0-63R2

Index

For SUBTRACT LOGICAL (SLGRK), the third operand is subtracted from the second operand, and
the result is placed in the first operand. Each operand occupies all 64 bits of the general register
designated by the corresponding R field of the instruction.

Unless the R1 field designates the same register as the R2 or R3 fields, the contents of the general
registers designated by the R2 and R3 fields remain unchanged.

The condition code is set as with all unsigned subtraction instructions.

87

87SHARE 115

Population-Count Facility

Instruction for determining the number of one bits in each of the eight bytes of a GR

Installation of the population-count facility (& al.) indicated by facility bit 45

B9E1

POPCNT R1,R2 [RRE]

R1 R2//// ////

R2 FE DC BA 98 76 54 32 10

R1 07 05 05 03 05 03 03 01

To tabulate one bits in a register, post processing is required, e.g.,
POPCNT 8,15
MSG 8,=X‘0101010101010101’
SRLG 8,8,56

Index

The POPULATION COUNT instruction is useful for determining the number of one bits contained in
each byte of a 64-bit register. For each byte in the register designated by the R2 field of the
instruction, POPCNT places an 8-bit count of the number of one bits into the corresponding byte of
the general register designated by the R1 field of the instruction.

POPCNT may be useful in applications that use bit maps to indicate the presence, validity, or
availability of some group of resources. An example of such bit-map usage may be found in
Appendix A of the z/Architecture Principles of Operation (SA22-7832) in the programming example
for the FIND LEFTMOST ONE instruction.

POPCNT provides only an indication of one bits for each byte. If the application needs to know the
number of one bits in larger units, it must perform its own post processing. The example shown
illustrates a clever way of summing the eight bytes, however on some models, the MULTIPLY
SINGLE instruction may be slower than a group of instructions, for example:

POPCNT 8,15
AHHLR 8,8,8
SLLG 9,8,16
ALGR 8,9
SLLG 9,8,8
ALGR 8,9
SRLG 8,8,56

This sequence of instructions can easily be adapted to produce a count of one bits per halfword or
per word.

88

88SHARE 115

Floating-Point Extension Facility (1)

Extensions to BFP and DFP instructions:

New BFP rounding mode:

► Round to prepare for shorter precision

► Control in the floating-point control register (FPCR)

New DFP quantum exception:

► New mask and flag controls in the FPCR

New IEEE inexact-exception control (Xxc)

► Alternate forms of many BFP and DFP instructions with new M4 field

New BFP and DFP instructions for converting to/from fixed-point

► CONVERT FROM LOGICAL

► CONVERT TO LOGICAL

Index

The floating-point extension facility provides enhancements to the binary-floating-point (BFP) and
decimal-floating-point (DFP) facilities. BFP was added to the architecture late in the life of ESA/390
(circa 1998); DFP was added in the System z9-109 (circa 2005).

For BFP, a new rounding mode – round to prepare for shorter precision – is provided. The new
rounding mode may be controlled by means of a new bit in the floating-point control register, or by
means of the M3 field in alternate forms of the CONVERT FROM FIXED, CONVERT TO FIXED,
LOAD FP INTEGER, and LOAD ROUNDED instructions.

For most computational DFP operations, a new quantum exception-exception condition exists
whenever the delivered DFP result is inexact, or when the result is exact and finite but the delivered
quantum differs from the preferred quantum. The quantum-exception condition also applies to the
DIVIDE, LOAD FP INTEGER, QUANTIZE, and REROUND instructions, but for somewhat different
causes. Whether or not the quantum-exception condition results in an interruption is controlled and
indicated by a new mask and flag bit, respectively, in the floating-point control register.

For both BFP and DFP, a new M4 field has been added to certain alternate forms of instructions to
control the IEEE inexact-exception condition.

Finally, both BFP and DFP have new instructions, CONVERT FROM LOGICAL and CONVERT TO
LOGICAL, for converting between unsigned binary integers and the respective floating-point formats.

89

89SHARE 115

Floating-Point Extension Facility (2)
New BFP Instructions

B2B8SSRNMBSET BFP ROUNDING MODE

B3ACRRFCLGEBRCONVERT TO LOGICAL (64 Short BFP)

B3ADRRFCLGDBRCONVERT TO LOGICAL (64 Long BFP)

CLGXBR

CLFEBR

CLFDBR

CLFXBR

CELGBR

CDLGBR

CXLGBR

CELFBR

CDLFBR

CXLFBR

Mnemonic

B3AERRFCONVERT TO LOGICAL (64 Extended BFP)

B39CRRFCONVERT TO LOGICAL (32 Short BFP)

B39DRRFCONVERT TO LOGICAL (32 Long BFP)

B39ERRFCONVERT TO LOGICAL (32 Extended BFP)

B3A0RRFCONVERT FROM LOGICAL (Short BFP 64)

B3A1RRFCONVERT FROM LOGICAL (Long BFP 64)

B3A2RRFCONVERT FROM LOGICAL (Extended BFP 64)

B390

B391

B392

Opcode

RRF

RRF

RRF

FormatInstruction

CONVERT FROM LOGICAL (Extended BFP 32)

CONVERT FROM LOGICAL (Long BFP 32)

CONVERT FROM LOGICAL (Short BFP 32)

Index

Note: All instructions are documented in Chapter 19 except for SRNMB which is documented in Chapter 9. SRNMB
is a complete superset of the functionality of SRNM.

This slide illustrates the new BFP instructions.

The majority of the instructions are various forms of the CONVERT FROM LOGICAL and CONVERT
TO LOGICAL instructions. CONVERT FROM LOGICAL converts an unsigned binary integer in the
second operand to a binary-floating-point value that is placed in the first operand. CONVERT TO
LOGICAL rounds a binary-floating-point value in the second operand to an integer value and then
converts it to fixed-point format in the first operand.

SET BFP ROUNDING MODE (SRNM) was the original instruction to set the 2-bit BFP rounding
mode in the floating-point control register (FPCR). The new SRNMB instruction sets the 3-bit BFP
rounding mode in the FPCR. SRNMB is a complete superset of the functionality of SRNM (SRNM is
now deprecated.)

90

90SHARE 115

Floating-Point Extension Facility (3)
Alternate Forms of BFP Instructions

B344RRFLEDBRALOAD ROUNDED (Short BFP Long)
B346RRFLEXBRALOAD ROUNDED (Short BFP Extended)
B345RRFLDXBRALOAD ROUNDED (Long BFP Extended)
B357RRFFIEBRALOAD FP INTEGER (Short BFP)
B35FRRFFIDBRALOAD FP INTEGER (Long BFP)
B347RRFFIXBRALOAD FP INTEGER (Extended BFP)
B3A8RRFCGEBRACONVERT TO FIXED (64 Short BFP)
B3A9RRFCGDBRACONVERT TO FIXED (64 Long BFP)

CGXBRA

CFEBRA

CFDBRA

CFXBRA

CEGBRA

CDGBRA

CXGBRA

CEFBRA

CDFBRA

CXFBRA

Mnemonic

B3AARRFCONVERT TO FIXED (64 Extended BFP)
B398RRFCONVERT TO FIXED (32 Short BFP)
B399RRFCONVERT TO FIXED (32 Long BFP)
B39ARRFCONVERT TO FIXED (32 Extended BFP)
B3A4RRFCONVERT FROM FIXED (Short BFP 64)
B3A5RRFCONVERT FROM FIXED (Long BFP 64)
B3A6RRFCONVERT FROM FIXED (Extended BFP 64)
B394

B395

B396

Opcode

RRF

RRF

RRF

FormatInstruction
CONVERT FROM FIXED (Extended BFP 32)

CONVERT FROM FIXED (Long BFP 32)

CONVERT FROM FIXED (Short BFP 32)

Index

This slide illustrates alternate forms of existing BFP instructions, as indicated by the “A” suffix on the
mnemonic. The actual operation codes for these instructions are identical to those generated from
mnemonics without the A, but the High-Level Assembler recognizes new operands when the “A”
suffix is present.

For CONVERT FROM FIXED and LOAD ROUNDED, the alternate-mnemonic forms add both an M3
and M4 operand. The M3 operand provides a rounding control, and the M4 operand provides the
IEEE-inexact-exception control. For CONVERT TO FIXED and LOAD FP INTEGER, a rounding
control is already provided in the form of the M3 field, but the new M4 operand provides the IEEE-
inexact-exception control. For each of these instructions, and for DIVIDE TO INTEGER, the new
rounding method (round to prepare for shorter precision) may be specified.

91

91SHARE 115

Floating-Point Extension Facility (4)
New DFP Instructions

B949RRFCFXTRCONVERT TO FIXED (32 Extended DFP)

B941RRFCFDTRCONVERT TO FIXED (32 Long DFP)

B951RRFCDFTRCONVERT FROM FIXED (Long DFP 32)

B959RRFCXFTRCONVERT FROM FIXED (Extended DFP 32)

CLGDTR

CLGXTR

CLFDTR

CLFXTR

CDLGTR

CXLGTR

CDLFTR

CXLFTR

Mnemonic

B942RRFCONVERT TO LOGICAL (64 Long DFP)

B94ARRFCONVERT TO LOGICAL (64 Extended DFP)

B943RRFCONVERT TO LOGICAL (32 Long DFP)

B94BRRFCONVERT TO LOGICAL (32 Extended DFP)

B952RRFCONVERT FROM LOGICAL (Long DFP 64)

B95A

B953

B95B

Opcode

RRF

RRF

RRF

FormatInstruction

CONVERT FROM LOGICAL (Extended DFP 32)

CONVERT FROM LOGICAL (Long DFP 32)

CONVERT FROM LOGICAL (Extended DFP 64)

Index

This slide illustrates the new DFP instructions.

As with BFP, the new DFP instructions are various forms of the CONVERT FROM LOGICAL and
CONVERT TO LOGICAL instructions. CONVERT FROM LOGICAL converts an unsigned binary
integer in the second operand to a decimal-floating-point value that is placed in the first operand.
CONVERT TO LOGICAL rounds a decimal-floating-point value in the second operand to an integer
value and then converts it to unsigned fixed-point format in the first operand.

92

92SHARE 115

Floating-Point Extension Facility (5)
Alternate Forms of DFP Instructions

B3DARRFAXTRAADD (Extended DFP)

B3D2RRFADTRAADD (Long DFP)

SDTRA

SXTRA

MDTRA

MXTRA

DDTRA

DXTRA

CGDTRA

CGXTRA

CDGTRA

CXGTRA

Mnemonic

B3D3RRFSUBTRACT (Long DFP)
B3DBRRFSUBTRACT (Extended DFP)
B3D0RRFMULTIPLY (Long DFP)
B3D8RRFMULTIPLY (Extended DFP)
B3D1RRFDIVIDE (Long DFP)
B3D9RRFDIVIDE (Extended DFP)
B3E1RRFCONVERT TO FIXED (64 Long DFP)
B3E9

B3F1

B3F9

Opcode

RRF

RRF

RRF

FormatInstruction

CONVERT FROM FIXED (Extended DFP 64)

CONVERT FROM FIXED (Long DFP 64)

CONVERT TO FIXED (64 Extended DFP)

Index

This slide illustrates alternate forms of existing DFP instructions, as indicated by the “A” suffix on the
mnemonic. The actual operation codes for these instructions are identical to those generated from
mnemonics without the A, but the High-Level Assembler recognizes new operands when the “A”
suffix is present.

For the arithmetic operations, ADD, DIVIDE, MULTIPLY, and SUBTRACT, a new M4 operand is
provided to control the rounding mode of the result.

For CONVERT FROM FIXED, a new M3 operand is provided to control the rounding mode of the
result, and a new M4 operand provides the IEEE-inexact-exception control.

For CONVERT TO FIXED, a new M4 operand provides the IEEE-inexact-exception control.

Also, for all DFP instructions for which a rounding mode exists in the base architecture (i.e., the M3
field of CONVERT TO FIXED, LOAD FP INTEGER, LOAD ROUNDED, QUANTIZE, and
REROUND), additional rounding methods are available.

93

93SHARE 115

Message-Security Assist Extension 3 (MSA-X3)

Protects user cryptographic keys by encrypting them
under machine-generated wrapping keys:

► 256-Bit AES Wrapping-Key Register

► 256-Bit AES Wrapping-Key Verification-Pattern Register

► 192-Bit DEA Wrapping-Key Register

► 192-Bit DEA Wrapping-Key Verification-Pattern Register

MSA-X3 available on the System z10 GA3 (November 2009)

Installation of MSA-X3 indicated by facility bit 76

Index

The message-security assist was introduced in the System z10 at general-availability level 3
(November 2009). Although it is not new in the z196, we’ll devote a few slides to it, as it hasn’t been
published before.

MSA-X3 provides a means to protect user cryptographic keys by encrypting them under machine-
generated wrapping keys. When this extension is installed, two wrapping keys are provided for each
configuration: one for protecting user DEA keys and another for protecting user AES keys. The
wrapping keys reside in the machine so that, with an appropriate setting of controls, no clear value of
user cryptographic keys is observed anywhere in the system by any program.

The message-security-assist extension 3 may be available on models implementing the message-
security assist. The extension provides the following features:

• A 256-Bit AES Wrapping-Key Register: The register contents are used to protect user AES keys.

• A 256-Bit AES Wrapping-Key Verification-Pattern Register: The register contents are used to
identify the version of the AES wrapping key.

• A 192-Bit DEA Wrapping-Key Register: The register contents are used to protect user DEA keys.

• A 192-Bit DEA Wrapping-Key Verification-Pattern Register: The register contents are used to
identify the version of the DEA wrapping key.

A new section has been added to the back of the General Instructions chapter of the z/Architecture
Principles of Operation describing the protection of cryptographic keys.

94

94SHARE 115

MSA-X3 New Instruction

PERFORM CRYPTOGRAPHIC KEY MANAGEMENT OPERATION (PCKMO)

► Functions:

– Query

– Encrypt DEA Key

– Encrypt TDEA 128 Key

– Encrypt TDEA 192 Key

– Encrypt AES 128 Key

– Encrypt AES 192 Key

– Encrypt AES 256 Key

► Provide a means of importing clear cryptographic keys

► Privileged operation

Index

PERFORM CRYPTOGRAHPIC KEY MANAGEMENT OPERATION (PCKMO) is a control
(privileged) instruction that provides a means of importing clear cryptographic keys.

95

95SHARE 115

MSA-X3 New Functions for Existing Instructions

CIPHER MESSAGE (KM),

CIPHER MESSAGE WITH CHAINING (KMC), and

COMPUTE MESSAGE AUTHENTICATION CODE (KMAC)

► New Functions for each instruction:

– Encrypted DEA Key (KM, KMC, & KMAC)

– Encrypted TDEA 128 Key (KM, KMC, & KMAC)

– Encrypted TDEA 192 Key (KM, KMC, & KMAC)

– Encrypted AES 128 Key (KM & KMC only)

– Encrypted AES 192 Key (KM & KMC only)

– Encrypted AES 256 Key (KM & KMC only)

► New functions use encrypted cryptographic key

Index

New functions are also added to the existing CIPHER MESSAGE (KM), CIPHER MESSAGE WITH
CHANING (KMC), and COMPUTE MESSAGE AUTHENTICATION CODE (KMAC) instructions that
allow encryption to be performed using the encrypted keys.

96

96SHARE 115

Message-Security Assist Extension 4 (MSA-X4)

Provides support for:

► Cipher-feedback (CFB) mode

► Output-feedback (OFB) mode

► Counter (CTR) mode

Provides primitives to facilitate support of:

► Cipher-based message-authentication (CMAC) mode

► Counter with cipher-block chaining – message authentication code (CCM) mode

► Galois/counter mode

► XEX-based Tweaked CodeBook mode with CipherText Stealing (XTS) mode

Installation of MSA-X4 indicated by facility bit 77

Requires MSA-3 to be installed

Index

The message-security-assist extension 4 (MSA-X4) is introduced with the IBM zEnterprise 196. It
requires that the MSA-X3 facility also be installed.

MSA X4 provides support for cipher feedback (CFB) mode, output feedback (OFB) mode, and
counter (CTR) mode of encryption and decryption. Additionally, primitive operations are provided to
facility the support for the cipher-based message-authentication (CMAC) mode, the counter with
cipher-block-chaining message-authentication code (CMM) mode, the Galois/counter mode, and the
XTS mode.

97

97SHARE 115

MSA-X4 New Instructions

CIPHER MESSAGE WITH CFB (KMF)

CIPHER MESSAGE WITH COUNTER (KMCTR)

CIPHER MESSAGE WITH OFB (KMO)

► Functions:

Index

– Query

– DEA

– TDEA

– TDEA 192

– Encrypted DEA

– Encrypted TDEA

– Encrypted TDEA 192

– AES 128

– AES 192

– AES 256

– Encrypted AES 128

– Encrypted AES 192

– Encrypted AES 256

MSA-X4 introduces four new instructions, three of which are enumerated on this slide:

• CIPHER MESSAGE WITH CFB (KMF) [cipher feedback mode]

• CIPHER MESSAGE WITH COUNTER (KMCTR) [counter mode]

• CIPHER MESSAGE WITH OFB (KMO) [output feedback mode]

Each of these instructions provides a common suite of functions listed. For each basic type of
function, there is a corresponding encrypted-key version.

98

98SHARE 115

MSA-X4 New Instructions
PERFORM CRYPTOGRAPHIC COMPUTATION (PCC)

► Functions:
– Query

– Compute last block CMAC using DEA

– Compute last block CMAC using TDEA 128

– Compute last block CMAC using TDEA 192

– Compute last block CMAC using encrypted
DEA

– Compute last block CMAC using encrypted
TDEA 128

– Compute last block CMAC using encrypted
TDEA 192

– Compute last block CMAC using AES 128

– Compute last block CMAC using AES 192

– Compute last block CMAC using AES 256

– Compute last block CMAC using encrypted
AES 128

– Compute last block CMAC using encrypted
AES 192

– Compute last block CMAC using encrypted
AES 256

– Compute XTS parameter using AES 128

– Compute XTS parameter using AES 256

– Compute XTS parameter using encrypted
AES 128

– Compute XTS parameter using encrypted
AES 256

Index

The fourth of the new MSA-X4 instructions describes the new PERFORM CRYPTOGRAPHIC
COMPUTATION (PCC) instruction. This instruction provides the primitive operations to cipher-
based-message-authentication-code mode and XTS mode.

99

99SHARE 115

MSA-X4 New Functions for Existing Instructions

CIPHER MESSAGE (KM)

► XTS AES 128

► XTS AES 256

► Encrypted XTS AES 128

► Encrypted XTS AES 256

COMPUTE INTERMEDIATE MESSAGE DIGEST (KIMD)

► GHASH

COMPUTE MESSAGE AUTHENTICATION CODE (KMAC)

► AES 128

► AES 192

► AES 256

Index

MSA-X4 also adds new functions to existing message-security-assist instructions.

For CIPHER MESSAGE (KM), functions supporting the XTS and encrypted XTS modes are
provided.

For COMPUTE INTERMEDIATE MESSAGE DIGEST (KIMD), a function is provided in support of the
Galois/counter mode hashing.

For COMPUTE MESSAGE AUTHENTICATION CODE (KMAC), three new advanced-encryption-
standard (AES) functions are provided.

100

100SHARE 115

Miscellaneous Enhancements (1)

Fast BCR Serialization Facility

► BCR 15,0 – performs serialization & checkpoint sync.

► BCR 14,0 – performs serialization only
► Installation of the fast-BCR-serialization facility (& al.) indicated by

facility bit 45
Enhanced-Monitor Facility
► MONITOR CALL can now do counting without program interruption
► Requires O/S-supplied counting array in home AS
► Enabled by CR8 bits 16-31
► Installation of the enhanced-monitor facility indicated by facility bit

36
CMPSC-Enhancement Facility
► Provides zero-padding control – may improve performance
► Installation of the CMPSC-enhancement facility indicated by facility

bit 47

Index

The enhancements described on this slide are changes to existing general instructions to provide
improved performance or new function.

For as long as I can remember, the BRANCH ON CONDITION (BCR) instruction caused
serialization and checkpoint synchronization to occur when the M1 and R2 fields of the instruction
contain 1111 and 0000 binary, respectively. Without getting into tedious details of machine-check
recovery, there may be situations where a programs wants to effect a serialization operation, but
doesn’t care about checkpoint synchronization. A new form of BCR will cause serialization only when
the M1 and R2 fields of the instruction contain 1110 and 0000 binary, respectively.

MONITOR CALL provides a means by which a program can – with operating-system assistance –
cause monitor-event program interruptions to occur during the execution of a program. The O/S can
use these interruptions to count, measure, or otherwise observe the execution of the program. If the
O/S does not enable the monitor class specified in the MC instruction (via control register 8), the
instruction is effectively a no-op. This type of program measurement is expensive and tends to
perturb the condition being measured. The enhanced-monitor facility provides a means by which
MONITOR CALL can be used to effect the counting of events in a program – without a program
interruption and (other than set-up of a counting array) without operating-system intervention.

COMPRESSION CALL is performed by a specialized component in the CPU that operates best
when processing – and storing – data in larger chunks than just a byte. A new zero-padding control
on the CMPSC instruction allows the instruction to operate in this more efficient manner when storing
the last bytes of a result. The default zero-padding-control value of zero causes the CMPSC
instruction to operate as originally defined to ensure complete compatibility with the original
architecture, however we recommend that all users of CMPSC set the zero-padding control to one
for potential improved performance.

101

101SHARE 115

Miscellaneous Enhancements (2)

IPTE-Range Facility
► Lets INVALIDATE PAGE TABLE ENTRY invalidate a block of PTEs
► Can improve performance in page reassignment
► Installation of the IPTE-range facility (& al.) indicated by facility bit

13
Nonquiescing Key-Setting Facility
► Allows key setting without broadcast to other CPUs
► Can improve performance in page reassignment
► Installation of the nonquiescing key-setting facility indicated by

facility bit 14
Reset-Reference-Bits-Multiple Facility
► Provides new RRBM instruction – allows resetting a block of

reference bits in one instruction
► Provides performance improvement for z/OS
► Installation of the RRBM facility indicated by facility bit 66

Index

The enhancements listed on this slide are all tweaks to control instructions.

As originally defined, INVALIDATE PAGE TABLE ENTRY (IPTE) sets the invalid bit to one in a PTE,
and then signals all CPUs in the configuration to purge (at least) that entry from their translation-
lookaside buffers (TLBs). Signaling and waiting for the acknowledgement of the TLB-purging was a
time-consuming operation, especially if a large number of PTEs were being invalidated in bulk. The
IPTE-range facility provides a new operand to the instruction that designates the number of PTEs to
be invalidated. This allows the instruction to signal other CPUs to invalidate a block of contiguous
PTEs, rather than once per PTE.

The SET STORAGE KEY (SSKE) instruction signal other CPUs of changes to the storage key to
ensure that all CPUs observe a consistent key value. A signal to change the key may cause other
CPUs to become quiesced to ensure that it is not accessing the storage in which the key is being
changed. However, in certain situations the O/S may be able to ensure that other CPUs are not
accessing the block (e.g., when a block is not mapped to a virtual address space). In such situations,
performance may be improved by bypassing the quiesce operation. The nonquiescing-SSKE
provides a new control to the SSKE instruction to cause the quiescing operation to be skipped. For
compatibility purposes, the default (0) value of the control is to cause quiescing.

The reset-reference-bits-multiple facility provides a new control to the RESET REFERENCE BITS
EXTENDED (RRBE) instruction, to allow it to reset the reference bits for multiple contiguous blocks
of real storage with one execution of the instruction.

102

102SHARE 115

Summary
The IBM zEnterprise 196 provides a broad range of new facilities
to improve performance and function:
► High-word facility (30 instructions)
► Interlocked-access facility (12 instructions)
► Load/store-on-condition facility (6 instructions)
► Distinct-operands facility (22 instructions)
► Population-count facility (1 instruction)
► Enhanced-floating-point facility (25 new, 30 changed instructions)
► MSA-X4 facility (4 new, 3 changed instructions, new functions)
► Etc.

Potential for:
► Significant performance improvement
► Enhanced capabilities
► Simpler code

Index

The old saw about effective presentations states, “tell them what you’re going to say, say it, tell them
what you’ve just said!” We’re at the third point of that teaching, and as the past 99 slides illustrate,
I’ve said a lot (or if you’re reading these slides, you’ve read a lot).

The IBM zEnterprise introduces a wide variety of new CPU facilities – some of which are simply
designed to provide new or extended functions – however most of these facilities are designed to
provide improved performance.

There is the potential that in exploiting these new instructions, significant performance improvement
may be realized. The high-word and distinct-operand facilities may provide register-constraint relief
to certain applications. The interlocked-access and load-and-store-on-condition facilities may provide
reduced instruction path length – the interlocked-access facility is particularly useful in MP
applications.

The enhanced-floating-point facility provides additional function for floating-point applications, and the
MSA-X3 and MSA-X4 facilities provide powerful operations for cryptographic and security
applications.

In addition to improved performance and function, exploitation of these facilities may yield simpler
code paths, thus making program execution faster and program debugging easier.

103

103SHARE 115

Questions?

For those in the live audience, I will gladly entertain questions here.

For those who view this on the SHARE web site, your questions are also welcome. My email address
is listed on the first slide.

